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ABSTRACT
In typical experiments to evaluate novel pointing-facilitation tech-

niques, participants are asked to perform a task as rapidly and

accurately as possible. However, the balance can differ among par-

ticipants, and the techniques’ effectiveness would change if the

majority of participants give weight to either speed or accuracy.

We investigated the effects of three subjective biases (emphasizing

speed, neutral, and emphasizing accuracy) on the evaluation re-

sults of pointing-facilitation techniques, namely Bubble Cursor and

Bayesian Touch Criterion (BTC). The results indicate that Bubble
Cursor outperformed the baseline in terms of movement time and

error rate under all bias conditions, while BTC underperformed

a simpler target-prediction technique, which was an inconsistent

outcome to the original study. Examining multiple biases enables

researchers to discuss the (dis)advantages of novel or existing tech-

niques more precisely, which can be beneficial to reach a more

reliable conclusion.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; Pointing; Empirical studies in HCI.
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1 INTRODUCTION
1.1 Background
Since pointing to a target is one of the most fundamental operations

on PCs and touch devices, reducing operation times and error rates

is beneficial to users. HCI researchers have thus proposed numerous

pointing-facilitation techniques over at least the past three decades.

When they evaluate the effectiveness of a novel technique, a user

experiment to compare it with a baseline is commonly conducted.

A key factor on which we focus is the instruction to participants.

The most typical instruction is “Select a target as rapidly and ac-

curately as possible” [56], or variations such as “Work as fast as

possible while still maintaining high accuracy.” [24]. These instruc-

tions are reasonable, because in realistic computer usage, users

would like to select a target without spending an unnecessarily

long time and avoid missing targets.

However, two concerns arise. First, balancing the speed-accuracy

tradeoff is just one possible realistic condition [7, 60, 65, 69]. For

example, when there are unwanted hyperlinks (i.e., distractors)

around the intended one, users have to carefully aim for the target;

otherwise, an additional time cost to go back to the previous page

then point to the target again is needed [68]. Second, the interpreta-

tion of “operating as rapidly and accurately as possible” could differ

among participants. In a previous study, when the participants were

unsure how to weight the balance between speed and accuracy, the

researchers answered “It is up to you” [43]. Therefore, it is possible

that a group of participants in an experiment be biased towards

either speed or accuracy, which changes the task outcomes such as

movement time MT and error rate ER.
This speed-accuracy imbalance could affect research conclusions

when evaluating pointing-facilitation techniques. Suppose that an

error-reduction technique exhibits a mean ER of 3% while a baseline

technique exhibits an ER of 9%. Researchers then run a statistical

test to claim that the proposed technique was significantly better

than the baseline. If the participant group is biased towards accu-

racy, however, the ERs would be (say) 1 and 1.5% for the proposed

and baseline techniques, respectively, and no significant difference

would be found. Such a low ER is possible according to previous

https://orcid.org/0000-0001-9807-120X
https://doi.org/10.1145/3544548.3580740
https://doi.org/10.1145/3544548.3580740


CHI ’23, April 23–28, 2023, Hamburg, Germany Yamanaka et al.

studies. Zhai et al., for example, reported that ER without a facilita-

tion technique was 0% when the instruction emphasized accuracy

[75].

Assuming that conclusions on the effectiveness of a novel tech-

nique is affected by the participants’ speed-accuracy balances, we

should thus consider the importance of replication studies that has

been pointed out in the HCI field [17, 36]. In addition to the estab-

lished methodology of such a direct replication, we examined how

subjective speed-accuracy biases affect the effectiveness of pointing-

facilitation techniques. We conducted two experiments to evaluate

two pointing-facilitation techniques, i.e., Bubble Cursor [32] and

Bayesian Touch Criterion (BTC) [11], under three speed-accuracy
bias conditions. Our findings are as follows.

• In Experiment 1, Bubble Cursor outperformed the baseline

in terms of MT and ER under all three bias conditions. This

result enhances the claim in the original study [32] that this

technique achieves high performance regardless of users

operating rapidly or carefully, resulting in increasing the

generalizability of its effectiveness.

• In Experiment 2, BTC underperformed a simpler technique

under all three bias conditions. This result supports the lack

of reproducibility in BTC’s effectiveness more strongly than

testing only a single bias (i.e., balancing speed and accuracy).

1.2 Contribution Statement
We offer the following two main contributions, which have never

been conducted and discussed in the literature as an application of

varying speed-accuracy biases.

• We conducted two replication studies to evaluate the su-

periority of Bubble Cursor and BTC to the baselines under

the three subjective bias conditions. These two experiments

were designed carefully for fair comparisons with the conclu-

sions of original studies, e.g., using the same task difficulties,

same number of participants, and same statistical tests.

• Our results will enable researchers to introduce this method-

ology of intentionally varying speed-accuracy biases to stren-

gthen the research conclusions when (1) testing their novel

techniques’ effectiveness, (2) replicating an evaluation study

for a previously proposed technique, and (3) validating the

applicability of a technique to other devices. This methodol-

ogy will enrich their understanding of the techniques, ensure

the validity of research conclusions, and indicate future direc-

tions to resolve limitations, e.g., by reducing ER even when

users are biased towards accuracy.

Because varying speed-accuracy biases can be used with only oral

instructions, our work provides an easy-to-apply methodology

when researchers conduct user studies. While we limited our focus

to target-pointing tasks in this paper, this methodology could be

introduced to other operation paradigms and facilitation techniques,

such as those for goal-crossing tasks [2, 4, 71] and path-steering

ones [1, 22, 66]. Our work thus opens up a new research space,

which informs potential future work.

2 RELATEDWORK
2.1 Fitts’ Law and Target Selection-facilitation

Techniques
The MT to point to a target using mice and touchscreens is accu-

rately modeled using Fitts’ law [26, 47]:

MT = 𝑎 + 𝑏 · log
2

(
𝐴

𝑊
+ 1

)
, (1)

where 𝐴 is the distance from the initial position of the cursor or

finger to the target center,𝑊 is the target width, and 𝑎 and 𝑏 are

empirical constants. The logarithmic term is called the index of

difficulty ID in bits.

Fitts’ law expresses that MT can be reduced by shortening 𝐴 or

expanding𝑊 . Example techniques to shorten 𝐴 include Delphian

Desktop [5], Drag-and-pop [9], and Ninja Cursors [41], and those

to widen𝑊 include Area Cursor [40], Expanding Targets [49, 73],

and Sticky Icons [64]. Techniques for touch-based operations re-

quire certain considerations such as no mouse cursor can be used.

Examples of such techniques include LinearDragger [6], Shift [59],

Escape [70], and 2D-BayesPointer [45].

For all the abovementioned techniques, researchers conducted

user experiments to evaluate howwell they outperform the baseline

technique, i.e., using a mouse cursor (or a finger) without any facili-

tation. Several researchers also examined other previously proposed

techniques to claim the novelty and effectiveness of their newly

proposed ones. For example, in a user study on LinearDragger [6],

the researchers compared it with four other techniques: baselines

of one- and two-handed tapping, Shift [59], and Escape [70].

2.2 Varying Speed-accuracy Biases
In typical pointing experiments including those in the abovemen-

tioned studies, participants are instructed to “point to a target as

rapidly and accurately as possible,” which emphasizes balancing

speed and accuracy [56]. However, it is common that participants

unintentionally weight either speed or accuracy; sometimes they

show shortMTs and high ERs, while in other cases they show long

MTs and low ERs [55, 67].
To compare user performance measured in such different speed-

accuracy balances, using throughput TP [bits/s] is recommended

[18, 47, 56]. Theoretically, TP is invariant even if the speed-accuracy

balance changes [47, 56]. For example, MacKenzie and Isokoski

compared TPs under three bias instructions: emphasizing speed,

neutral, and emphasizing accuracy, which we respectively call Fast,
Neutral, and Accurate. The TPs were 5.67, 5.73, and 5.70 bits/s,

respectively [48] (< 1% difference); thus the researchers claimed

that TP is an invariant metric.

In contrast, Olafsdottir et al. examined five instructions, i.e.,max
speed (asking to just minimize MT ), max accuracy (asking to point

to a 1-pixel line without any error), Fast, Neutral, and Accurate
[51]. The results indicated that TPs ranged from approximately 6

to 10 bits/s (a 42% difference); thus, they questioned the invariance

of TP .
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3 METHODOLOGY OF VARYING
SPEED-ACCURACY BIASES

3.1 Candidate Methods to Control
Speed-accuracy Tradeoffs

Varying speed-accuracy biases has been used to validate the in-

variance of TP for mouse-based pointing [48, 51], as well as pen-

based pointing [75] and keyboard typing [76]. We assume that

this methodology is also beneficial to researchers who would like

to evaluate the effectiveness of their novel pointing-facilitation

techniques. This is because users sometimes cannot maintain the

speed-accuracy balance and in realistic situations would change

the balance depending on the density of distractors [13, 65] and

time costs when missing targets [7, 69].

Regarding the relevance of previous work on the TP invariance

to our current study, researchers have established several methods

to appropriately control speed-accuracy tradeoffs; thus, we have

only to choose one of several possible approaches. For example,

MacKenzie and Isokoski gave participants a goal MT and feedback

of each bias’s result [48]. That is, a mean MT in a pre-test session

with the Neutral instruction was recorded for each participant,

and this result was written on a piece of paper. In the subsequent

data-collection session under the Fast (or Accurate) condition, the
participant was then asked to make the mean MT at least 10%

shorter (or longer) than in the pre-test session.

While the objectivewas not to validate the TP invariance, research-

ers have also used other approaches to enforce a specific speed-

accuracy tradeoff. For example, in Wobbrock et al.’s experiment,

the participants had to point to the target before the time limit in-

formed with a metronome [60]. ER-based control has also been used.
For example, in an experiment to evaluate the target-expansion

technique, Zhai et al. controlled the ER to 4% by means of the ex-

perimental system displaying the resultant ER after each block as

well as suggesting to slow-down or speed-up the movement speed

[74].

Another way to control the speed-accuracy tradeoff is to give

only verbal instructions to emphasize either speed or accuracy.

For example, TP-invariance studies, including Guiard et al.’s work

on pointing [33] and Zhang et al.’s text-entry experiment [76],

mentioned that the speed-accuracy biases were instructed verbally.

Studies on model-fit improvements by using the effective width
for target pointing [75] and path steering [78] also gave verbal

instructions to emphasize speed or accuracy. Note that, according

to their papers, feedback on the resultantMT and ER was not given

to the participants during or after the experiments.

We were concerned about the verbal instruction that a group of

participants could not perform the task differently for two or more

bias conditions, e.g., they would exhibit almost identicalMTs under
the Neutral and Accurate conditions. However, these studies using
verbal instructions have shown that their participants appropriately

differentiated MTs and ERs depending on the instructed bias. We

thus followed this approach to use the verbal instructions, which

were also printed on a piece of paper and noted on the screen as a

reminder, and gave no feedback on the results to the participants.

3.2 Biases used in Our Experiments
In this study, we used three biases: Fast, Neutral, and Accurate.
To determine if the participants could adequately follow the in-

struction, we examined the statistical differences among the biases

in terms of MT and ER. Previous studies used more aggressive in-

structions, such as max speed and max accuracy [51], or extremely

fast and extremely accurate [75]. Because our question is whether

the empirical conclusions would change when the participants are

biased towards speed or accuracy (unintentionally [55, 67] or due

to external situations [7, 13]), such drastic instructions, such as

“always click on the same one pixel” [51], are outside our focus.

In our experiments, we gave the instructions in two ways.

• An experimenter read aloud the three bias conditions that

were written on a piece of paper at the beginning of the

experiment. This sheet was placed in front of the participants,

and they could check the three biases anytime.

• The current bias was noted at the top of the screen as a

reminder.

The three biases noted on the sheet were as follows.

• Fast: Perform the task as rapidly as possible. It is okay to

make errors. However, please avoid repeatedly pressing the

mouse button without aiming for the target.

• Neutral: Perform the task as rapidly and as accurately as

possible.

• Accurate: Perform the task as accurately as possible. It is

okay to spend some time to reduce errors. However, please

avoid spending an unnecessarily long time.

On the experiment screen, only the first sentence was displayed as

a reminder, i.e., the sentences with underlines for each bias.

3.3 Benefits for Researchers to Test Multiple
Biases

Researchers are aware that examining multiple conditions in evalu-

ating pointing techniques is preferable to claim the generalizability

of their conclusions. For example, testing a wide range of IDs by
using small to large targets is recommended [56], and using 1D

bar-shaped targets, such as hyperlinks, as well as 2D targets is sug-

gested for simulating more realistic user interfaces [10, 62, 63, 68].

Similarly, it was worth varying speed-accuracy biases in their exper-

iments as another factor to enrich the task variations and increase

realism.

If we find significant differences in task outcomes (e.g., MT and

ER) between a facilitation technique and baseline under any bias

condition, it enhances the effectiveness of the technique regardless

of users being careful or in a hurry. In contrast, if the facilitation

technique is significantly better than the baseline in limited biases

(e.g., only for Neutral), it constrains the claim on the high perfor-

mance of the facilitation technique to when users appropriately

balance speed and accuracy. In both cases, however, testing multiple

biases can deepen our understanding of when a novel technique is

beneficial to users.

In our study, we summarize our research hypotheses (Hs) as

follows. Because Bubble Cursor is assumed to reduce both MT and

ER [32] while BTC was designed to reduce only ER [11], H1 and

H2 have variations noted as (a) and (b).
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Figure 1: Bubble Cursor updates the radius of its activation area (gray circle) to capture only the closest target. When the mouse
button is pressed, the target labeled “1” is selected in (a), “2” in (b), and “3” in (c).

• H1: For the Neutral condition, we reproduce the same con-

clusion on the superiority of the facilitation techniques to the

baselines in terms of (a) both MT and ER for Bubble Cursor

and (b) ER for BTC.
• H2: When the speed-accuracy balance is biased towards

speed or accuracy, the superiority of facilitation techniques

is not statistically confirmed in terms of (a) either MT or ER
for Bubble Cursor and (b) ER for BTC.

For H2, on the basis of the report by Zhai et al. who found a 0%

ER for the baseline technique under the Accurate condition [75],

we suspect that Bubble Cursor and BTC would not outperform

the baselines in terms of ER when we instruct the participants to

perform the tasks accurately.

Although we examined Bubble Cursor [32] and BTC [11], any

other technique is worth being tested, such as extended versions

of Bubble Cursor [15, 29, 34, 35, 44, 46, 57, 58]. Our choices were

determined on the basis of simplicity of implementation and variety

of input devices. Varying subjective biases for tasks other than

target pointing would also be of great significance, which will be

included in our future work.

4 EXPERIMENT 1: BUBBLE CURSOR
4.1 Mechanism of Bubble Cursor
Bubble Cursor has a wide area to invoke a click event, rather than

a single hotspot with the baseline technique [32]. The radius of

Bubble Cursor is dynamically updated so that the activation area

captures only one closest target (Figure 1). This mechanism prac-

tically shortens the distance to the target and widens the target

width, which should reduce MT in accordance with Fitts’ law.

In the original study [32], Bubble Cursor outperformed the

baseline technique in terms of MT and ER. Thanks to its easy-

to-implement algorithm without tuning environment-specific pa-

rameters (e.g., those for the cursor-expansion function in DynaSpot

[15]), evaluation of Bubble Cursor has been replicated several times

[13, 15, 42], and its superiority to the baseline has been consistently

confirmed.

4.2 Participants
Twelve volunteer students (the same number as in the main experi-

ment of Bubble Cursor [32]) from a local university participated in

this study; ten men, two women; ages: 𝑀 = 20.6, SD = 1.11 years.

All were right-handed and daily mouse users.

4.3 Apparatus
We used a desktop PC (Intel Core i9-12900KF, GeForce RTX 3070 Ti,

32.00 GB RAM, Windows 10 Home). The display was manufactured

by ASUS (model: VZ249HR; 23.8 inches, 1920 × 1080 pixels; 5-msec

response time) and had a 60-Hz refresh rate. The experimental

system was implemented with Unity 2019.2.19f1 and used in full-

screen mode. The wired optical mouse was Logitech G300s (800

dpi). To increase the ecological validity, we set the cursor-speed

slider in the Control Panel to default (middle) and turn on the cursor

acceleration function (“Enhance pointer precision”), which is the

default of the Windows OS.

4.4 Task
We mostly followed the experimental task used in previous studies

to evaluate Bubble Cursor [15, 32]. As shown in Figure 2a, the

participants aimed for the red target.

The order of the 23 targets is shown in Figure 2b, which referred

to ISO 9241-9 [15, 39]. A set consisted of 23 successive selections

(excluding the starting click) with a fixed𝐴×𝑊 ×EW/𝑊 condition,

where EW is the effectively available width for Bubble Cursor

defined by the distance to four surrounding distractors (Figure 2c).

When a click was successful, a bell sound was played, while a

beep was played when a target was missed. The participants had

to re-aim for the current target until success.

4.5 Design
This study was a 3×3×2×3×3 repeated-measures design with the

following independent variables and levels: three subjective biases

(Bias = Fast, Neutral, and Accurate), two cursor types (Cursor =
Point and Bubble), two 𝐴s (400 and 770 pixels), three𝑊 s (8, 24,

and 70 pixels), and three EW/𝑊 ratios (1.33, 2, and 3). The 𝐴s and

𝑊 s were determined by referring to the original study [32] so that

the ID ranges were the same to maintain the task difficulty for the

baseline technique (Cursor = Point). The three EW/𝑊 s were also

the same as in that study [32].

For Bubble, the density of intermediate targets that the cursor

passes over (called distractor density DD) had only a small effect

on MTs and no significant effect on ERs in the original study [32].

Therefore, a replication study to compare Point and Bubble that

focused on other conditions (laboratory vs. crowdsourcing) used

only DD = 0.5 [42], that is, the density is in the middle of no
distractor and fully tiled distractors. We followed this design to use

DD = 0.5.
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Figure 2: Setup in Experiment 1. (a) Display layout. (b) The order of targets to be clicked. (c) Task conditions based on [15]. Red
circle is the current target. Green circle is the previous target (i.e., current start position). Four gray circles are arranged to
control the EW/𝑊 ratio. Black circles are placed to control the distractor density. White circles are randomly placed distractors
through which the cursor would not pass. Colors in (c) are for illustration; the actual colors used in the system are shown in (a).

The offset of distractors in the direction perpendicular to the

line of movement was a pseudo-random length, such that each one

remained within the 20
◦
slice where the cursor would pass over (see

Figure 2c). The remaining space outside the 20
◦
slice was also filled

with distractors, the density of which was close to those within the

slice. The distractor positions were reset in every trial depending

on the new start and goal target locations [32].

4.6 Procedure
We set Neutral to be the first condition so that the participants

could speed-up or slow-down their cursor operation in the second

and third Biases compared with the first experienced condition.

Our experimental results would be affected by this arbitrary choice

of ordering, e.g., the participants needed a long time to get used to

the task, thus exhibited a high ER in the first Neutral condition. Yet,
according to our survey, there is no consensus on the order of Bias,
e.g., balanced among the participants [48, 75], Neutral to be the

last condition [76], and slow-to-fast order for half the participants

and fast-to-slow order for the remaining half (thus Neutral to be

the center) [33]. Testing if our conclusions would hold for counter-

balanced orders will be included in our future work.

For each of the three Biases, the participants performed the task

with both Cursors, and the order of the two Cursors was fixed for

each participant. We had four possible combinations regarding the

orders of second and third Bias conditions (Accurate or Fast) and
the two Cursors (Point or Bubble), which were balanced among

the 12 participants.

For each of the six Bias×Cursor conditions, the participants first
accomplished a practice set with a fixed target condition (𝐴 = 500,

𝑊 = 45, and EW/𝑊 = 1.6) that was not used in the data-collection

sets. They then performed 18 sets (2𝐴 × 3𝑊 × 3EW/𝑊 ) in a random

order. We recorded the data from 12participants × 3Bias × 2Cursor ×
2𝐴 × 3𝑊 × 3EW/𝑊 × 23

selections
= 29,808 trials. This experiment

took approximately one hour for each participant.

5 RESULTS OF EXPERIMENT 1
We removed 53 outlier trials (0.18%) where the movement distance

for the first click point was shorter than 𝐴/2 or the distance to the

target center was longer than 2𝑊 for Point and 2EW for Bubble

[7, 48, 60].

Regardless of the data type (MT or ER), we used RM-ANOVA,

although more appropriate analysis methods have been proposed

such as the aligned rank transform [61]. This decision was made

to maintain consistency with the original study [32] and justified

by the fact that ANOVA is robust against data distribution [23, 50].

Bonferroni correction was used for the 𝑝-value adjustment method

in pairwise comparisons.

As we examined five independent variables, reporting all inter-

action effects and pairwise tests (e.g., statistical significance values

of pairwise tests for Cursor×𝐴× EW/W ) would take up too much

space and not relate to the contributions of this paper. Thus, we de-

scribe the results related to our main objective, i.e., the bias effects

on pointing-technique comparison.

We did not use TP because it is inappropriate for Bubble Cursor.

In Chapuis et al.’s study, the MTs and ERs of Bubble were smaller

than those for Point under all target conditions, but the TP of

Bubble was worse than that of Point [15]. Because Bubble Cursor

enables users to click when the cursor center is away from the

target, the endpoint distribution became wider, which resulted in a

worse TP . This led to an inappropriate conclusion that a technique

with smaller MT and ER performs worse. This decision not to use

TP also holds for Experiment 2.

5.1 Movement Time
We analyzed successful (i.e., error-free) MTs. Previous studies on
Bubble Cursor showed that using the error-free or error-inclusive

MTs did not change the overall conclusions [15, 32]. Our results

indicate that theMTs were 0.9734 and 0.9728 sec on average, respec-
tively: a 0.0006-sec difference. This was not sensible in our system

(60 fps; a 0.0167-sec loop), thus would not affect our conclusion.

We found significant main effects of Bias (𝐹2,22 = 44.67, 𝑝 <

0.001, 𝜂2𝑝 = 0.80), Cursor (𝐹1,11 = 237.5, 𝑝 < 0.001, 𝜂2𝑝 = 0.96), 𝐴

(𝐹1,11 = 381.9, 𝑝 < 0.001, 𝜂2𝑝 = 0.97),𝑊 (𝐹2,22 = 624.0, 𝑝 < 0.001,

𝜂2𝑝 = 0.98), and EW/𝑊 (𝐹2,22 = 211.9, 𝑝 < 0.001, 𝜂2𝑝 = 0.95).

The MTs for Fast, Neutral, and Accurate were 0.825, 1.001, and

1.094 sec, respectively. Pairwise tests showed significant differences:

𝑝 < 0.001 for (Fast, Neutral) and (Fast, Accurate), and 𝑝 < 0.05

for (Neutral, Accurate). These results indicate that the participants
adequately changed their speed-accuracy balances in accordance

with the given Bias instructions in terms of operational speed.
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With respect to our interest on whether Bubble is significantly

better than Point throughout the three Biases, we found significant
interaction effect of Bias × Cursor (𝐹2,22 = 4.063, 𝑝 < 0.05, 𝜂2𝑝 =

0.27). As shown in Figure 3a, for any Bias, Bubble had significantly
shorter MTs than Point (𝑝 < 0.001 for all pairs).

5.2 Fitts’ Law Fitting
To test whether our participants’ behaviors followed typical point-

ing movements in any Bias, we show Fitts’ law regressions in

Figure 3b–d. Consistent with the original study [32], we used𝑊

for Point and EW for Bubble as the target size in Fitts’ law. When

we separately analyzed the fits for each Cursor, we obtained 𝑅2s

above 0.95, which was a bit lower than that in the original study

(0.96) [32]. The authors also reported the fit when the two Cur-
sors’ data were combined (𝑅2 = 0.966). Thus, they claimed that,

regardless of the Cursor, MTs can be predicted using the finally

available target sizes. In our data that combined the two Cursors,
we obtained 𝑅2 = 0.9649, 0.9445, and 0.9201 for Fast, Neutral and
Accurate, respectively. The prediction accuracy decreased as the

Bias became more accurate.

5.3 Error Rate
We found significant main effects of Bias (𝐹2,22 = 46.73, 𝑝 < 0.001,

𝜂2𝑝 = 0.81), Cursor (𝐹1,11 = 37.22, 𝑝 < 0.001, 𝜂2𝑝 = 0.77), 𝐴 (𝐹1,11 =

10.03, 𝑝 < 0.01, 𝜂2𝑝 = 0.48),𝑊 (𝐹2,22 = 81.87, 𝑝 < 0.001, 𝜂2𝑝 = 0.88),

and EW/W (𝐹2,22 = 22.36, 𝑝 < 0.001, 𝜂2𝑝 = 0.67). The ERs for Fast,
Neutral, and Accurate were 14.33, 5.231, and 1.893%, respectively.

1
We followed a common procedure to analyze Fitts’ law using the mean MT data.

However, Gori et al. later pointed out that Fitts’ law is about extreme performance;

thus, using minimumMT data is also valid [31]. We applied this novel method to our

data, and the results are included in the supplementary materials.

Pairwise tests showed significant differences: 𝑝 < 0.001 for (Fast,
Neutral) and (Fast, Accurate), and 𝑝 < 0.05 for (Neutral, Accurate).

We found a significant interaction effect of Bias×Cursor (𝐹2,22 =
7.065, 𝑝 < 0.01, 𝜂2𝑝 = 0.39). As shown in Figure 4a, for any Bias,
Bubble had significantly lower ERs than Point (at least 𝑝 < 0.05).

The ER for the baseline condition (Neutral × Point) was 7.61%,

which was higher than that in the original study of 2.98% and typical

pointing studies of 4% [56]. However, our result is not problematic

because (1) the 4% criterion is arbitrary and ERs should increase for
smaller𝑊 [30], and (2) the original and our studies used different

apparatuses and OS configurations such as cursor speeds.

Figure 4b–d illustrates the validation of our assumption that the

differences in ERs between the two Cursors decrease as the Bias
becomes more accurate. The interaction of Bias × Cursor ×𝑊 was

significant (𝐹4,44 = 3.982, 𝑝 < 0.01, 𝜂2𝑝 = 0.27). The results sup-

ported our assumption that the absolute ER differences decreased.

However, there still remains a significantly different pair in Fig-

ure 4d. For Accurate, the participants could spend a long time if

needed, but they still made significantly more errors when using

Point for the smallest target of𝑊 = 8 pixels.

5.4 Discussion of Experiment 1
Our first hypothesis H1 was that Bubble outperforms Point in

terms of MT and ER under the Neutral condition. This was statisti-
cally supported, as shown in Figures 3a and 4a. Thus, we appropri-

ately reproduced the superiority of Bubble Cursor to the baseline

as reported in the original study [32].

In contrast, our second hypothesisH2 that Bubble does not out-

perform Point under the Fast or Accurate condition was rejected;

under both conditions, Bubble exhibited significantly shorter MTs
(Figure 3a) and lower ERs (Figure 4a) than Point. Because theMTs
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a b

1 2

Target “2” has a higher probability
for this tap point on the x-axis

Figure 5: (a) Mechanism of BTC in a simplified version with 1D task axis. Tap points form normal distributions for the two
targets labeled “1” and “2”, depicted as curved lines above. When a user’s tap falls at the red “×” mark position, which is slightly
closer to the boundary of target “1”, BTC selects the target “2” because its probability for this tap point is higher than that for
“1”. Thus, although the geometric distance from the tap point is shorter for “1”, the probabilistic distance is shorter for “2”,
which is what is aimed for with BTC. (b) Three distractor layouts used in Experiment 2.

and ERs significantly changed in accordance with the given Bias
with at least 𝑝 < 0.05, we empirically enhanced the effectiveness of

Bubble Cursor compared with that reported in the original study

[32]. That is, even when users would like to select a target more

rapidly or more carefully than usual, Bubble Cursor is beneficial in

terms of time and accuracy.

Bubble had significantly lower ERs than Point even for the

Accurate condition (Figure 4a), but this conclusion would change

depending on the𝑊 s and 𝐸𝑊 s used in an experiment. If we had not

used the extremely small target of𝑊 = 8 pixels, the participants

would have selected targets with Point more accurately, and we

would not find significant differences between Bubble and Point

(Figure 4d). However, to demonstrate the effectiveness of a novel

technique, it is fair to design a task so that users may face a problem

when using the baseline technique then show that the novel one

resolved the issue. Therefore, using a target of𝑊 = 8 pixels to

maintain consistency with the original study’s task difficulty was a

reasonable choice to examine replicability.

6 EXPERIMENT 2: BAYESIAN TOUCH
CRITERION

6.1 Mechanism of Bayesian Touch Criterion
BTC predicts a target that a user tries to select on the basis of the

tapped position and touch-point variability parameters [11]. If users

repeatedly tap targets with several sizes, the squares of observed

variability in terms of the standard deviation (𝜎) and target size (𝑊 )

are assumed linearly related for both x- and y-axes on the screen:

𝜎2𝑥 = 𝜎2𝑎𝑥 + 𝛼𝑥𝑊
2

and 𝜎2𝑦 = 𝜎2𝑎𝑦 + 𝛼𝑦𝑊
2, (2)

where the intercepts (𝜎2𝑎𝑥 and 𝜎2𝑎𝑦 ) express the absolute precision of

the finger, and the slopes (𝛼𝑥 and 𝛼𝑦 ) are affected by users’ speed-

accuracy bias. Hereafter, subscripts 𝑥 and 𝑦 indicate the axes on

the screen.

Bi and Zhai derived a Bayesian touch distance BTD for circular

targets as follows.

BTD =
1

2

[
(𝑠𝑥 − 𝑐𝑥 )2

𝛼𝑥𝑊
2 + 𝜎2

𝑎𝑥

+
(
𝑠𝑦 − 𝑐𝑦

)
2

𝛼𝑦𝑊
2 + 𝜎2

𝑎𝑦

+ ln

(
𝛼𝑥𝑊

2 + 𝜎2

𝑎𝑥

)
+ ln

(
𝛼𝑦𝑊

2 + 𝜎2

𝑎𝑦

)]
, (3)

where 𝑠 is touch-point location, 𝑐 is the target center, and the re-

maining parameters (𝜎𝑎𝑥 , 𝛼𝑥 , 𝜎𝑎𝑦 , and 𝛼𝑦 ) are computed from

Equation 2. When a user taps the screen, each target’s BTD is cal-

culated, then the target having the shortest BTD is selected, as

illustrated in Figure 5a.

In the original paper [11], the four parameter values in Equa-

tion 2 were obtained from the data produced from 18 participants,

and different 18 participants joined another experiment to evaluate

Equation 3. Because BTC predicted the intended target more accu-

rately than the other candidate prediction techniques, Bi and Zhai

claimed the external validity of the four parameter values, which

can be generally used for other participant groups.

BTC can be extended by applying the prior probability, e.g., a cer-

tain target is selected more often than others [79]. This is a special

case in which developers have released an app and the frequencies

of selection for each button is known. In our experiment, however,

we used the most conservative case having no prior probabilities

for every target (i.e., all are equally probable), which is the same

condition as in the original paper [11].

6.2 Participants
Eighteen participants (same as in [11]) joined this study; 11 men,

sevenwomen; ages:𝑀 = 26.9, SD = 11.3 years. All were right-handed

and use touch device daily.

6.3 Apparatus
We used an iPad Pro (Gen 2); 12.9 inches, 2732 × 2048 pixels; 264

pixel-per-inch resolution. The experimental system was developed

with JavaScript, and the web page was viewed using Safari browser.

The refresh rate was set to 120 Hz. The device was put flat on a

table in portrait orientation.

6.4 Task
In the beginning of a session, the participants tapped a 6-mm-

diameter green start target shown at the screen center. The first

target and gray distractors then appeared, and tapping the target

revealed the next set of target and distractors.

If a tap fell inside the target, it turned red for a moment, while

tapping a distractor made it yellow as visual feedback. Tapping the

empty area gave no feedback. Judgment of tapping the target, dis-

tractor, or empty area depended on their visual boundaries. We used

the coordinate of Touch-Up event as the tap position [11]. When
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tapping outside the target, the participants had to immediately

re-aim for it until success.

6.5 Design and Procedure
This study had 3× 3× 3× 3 conditions. We used three Biases: Fast,
Neutral, and Accurate. The three𝑊 s, three distractor widths, and

three distractor layouts were the same as in the original study [11].

Both𝑊 s and distractor widths were 3, 5, and 7 mm, which were

independently chosen. Three distractor layouts were (1) top and

bottom of the target, (2) left and right, and (3) these four positions

(see Figure 5b). The gap between the target edge and the distractor

edge was 0.5 mm.

To check whether the participants changed their speed-accuracy

balance depending on the given Bias, we ensured that the distance

from the previous target to the current one was fixed to 20 mm,

which enabled us to compare theMTs for all Biases while the angle
was randomized. The target and any distractor was at least 0.2 mm

from the screen edges.

For each Bias, the participants performed 3𝑊 ×3
distractor widths

×
3
distractor layouts

× 20repetitions = 540 successful taps. A session con-

sisted of two repetitions; thus, they accomplished ten sessions for

each Bias. They could take a short break between sessions. The

first session (i.e., two repetitions) for each Bias was discarded as

practice, and data from the remaining nine sessions were analyzed.

This experiment involved 3𝑊 × 3
distractor widths

× 3
distractor layouts

×
18repetitions × 3Bias × 18participants = 26,244 data-collection trials.

This experiment took approximately 35 minutes for each partici-

pant.

6.6 Target Selection Criteria
We used the following four criteria, which are the same as in the

original paper [11].

• Visual Boundary (VB): A circle is selected if and only if a tap

falls inside it. This is the baseline criterion used in common

user interfaces.

• Visual Boundary or Shortest Distance to Circle Boundary

(VB/SDB): It applies the VB rule first. If a tap falls on the

empty space, the selected target is the circle with the shortest

distance from its boundary to the tap point.

• Visual Boundary or Shortest Distance to Circle Center

(VB/SDC): It applies the VB rule first. If a tap falls on the

empty space, the selected target is the circle with the shortest

distance from its center to the tap point.

• Bayesian Touch Criterion (BTC): A circle with the shortest

BTD is selected.

In the original study [11], Bi and Zhai measured the four parame-

ter values in Equation 2 with the thumb and index finger separately

then used the parameter values after merging the two finger-type

data, called generic parameters. They confirmed that whether using

the parameter values of each finger or the generic parameters did

not affect the target-prediction accuracy (𝑝 ≈ 1). Following this

procedure, we compared the ER difference when using their generic

and index-finger parameters, which we call BTC/Gen and BTC/Idx.
We also examined if using the parameter values computed from

our data for each Bias would improve prediction accuracy. We call

this BTC using bias-specific parameters as BTC/Spc.

7 RESULTS OF EXPERIMENT 2
We recorded 32,129 taps including successes and failures. Outlier

trials were removed if the tap position was ≥15 mm from the target

center [11]. We detected 137 outliers (0.43%). According to the

experimenters’ observation, such outliers occurred mainly because

the participants’ little finger accidentally contacted the screen.

7.1 Movement Time
Although MT was not a main objective in this experiment, the

result supported that the participants appropriately tried following

the given Bias. The meanMTs for the first tap in each trial for Fast,
Neutral and Accurate were 566, 651, and 764 ms, respectively. An

RM-ANOVA showed the main effect of Bias (𝐹2,34 = 35.42, 𝑝 <

0.001, 𝜂2𝑝 = 0.68), and pairwise tests showed significant differences

between Fast and Neutral (𝑝 < 0.001), Fast and Accurate (𝑝 <

0.001), and Neutral and Accurate (𝑝 < 0.01).

This finding holds even if we use MT for every tap, i.e., we

analyzed allMTs for the first and subsequent taps if errors occurred.
The mean MTs for Fast, Neutral and Accurate were 549, 635, and
755 ms, respectively. An RM-ANOVA showed the main effect of

Bias (𝐹2,34 = 42.18, 𝑝 < 0.001, 𝜂2𝑝 = 0.71), and pairwise tests showed

𝑝 < 0.001 for all Bias pairs. Thus, the participants appropriately
followed the given Bias and changed their tapping speed.

7.2 Regressions of Tap-point Variability
Regarding the BTC/Spc criterion, we obtained the following param-

eter values for Equation 2.

Fast : 𝜎2𝑥 = 1.351 + 0.009001𝑊 2 (𝑅2 = 0.9516) (4)

𝜎2𝑦 =1.252 + 0.01200𝑊 2 (𝑅2 = 0.9502) (5)

Neutral : 𝜎2𝑥 = 0.8936 + 0.009057𝑊 2 (𝑅2 = 0.9986) (6)

𝜎2𝑦 =0.7990 + 0.01004𝑊 2 (𝑅2 = 0.9999) (7)

Accurate : 𝜎2𝑥 = 0.5672 + 0.01109𝑊 2 (𝑅2 = 0.9978) (8)

𝜎2𝑦 =0.5814 + 0.009249𝑊 2 (𝑅2 = 0.9753) (9)

The number of data points was three (i.e.,𝑊 = 3, 5, and 7 mm) for

each regression, and other independent variables were merged. For

the BTC/Gen and BTC/Idx criteria, we used the following parameter

values, as reported in the original study [11]
2
.

BTC/Gen : 𝜎2𝑥 = 1.680 + 0.0075𝑊 2, 𝜎2𝑦 = 1.329 + 0.0108𝑊 2
(10)

BTC/Idx : 𝜎2𝑥 = 1.540 + 0.0075𝑊 2, 𝜎2𝑦 = 1.250 + 0.0104𝑊 2
(11)

7.3 Error Rate
Figure 6 shows the ERs for all Biases. In the original paper, the ER
for the baseline VB was 19.6% [11], which was higher than the ER
under our Neutral condition (14.29%) and slightly less than that of

Fast (19.83%). This indicates that our participants were relatively
more accurate when instructed to operate as rapidly and accurately

as possible.

An RM-ANOVA showed that ER was significantly affected by

the selection criteria (𝐹5,85 = 305.3, 𝑝 < 0.001, 𝜂2𝑝 = 0.95) and Bias
(𝐹2,34 = 52.86, 𝑝 < 0.001, 𝜂2𝑝 = 0.76). The ERs for Fast, Neutral, and

2
We used more precise values with a larger number of digits reported in Bi and Zhai’s

other paper [12], which referred to [11].
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Figure 6: ERs per selection criterion for each Bias.3

Accurate were 8.785, 5.304, and 3.061%, respectively, and we found

𝑝 < 0.001 for all pairs. This indicates that, in addition to the MT
results, the participants appropriately changed their speed-accuracy

balance in accordance with the given Bias.
The interaction of selection criteria×Biaswas significant (𝐹10,170 =

45.82, 𝑝 < 0.001, 𝜂2𝑝 = 0.73). As shown in Figure 6, the results of

pairwise tests indicate the following points.

• Using VB/SDC was the best throughout the three Biases. All
pairwise tests to compare VB/SDC and the other five criteria

showed significant differences with 𝑝 < 0.05 at least.

• For the three variations of BTC, we found no significant

differences. This was consistent with Bi and Zhai’s report

that using generic or each-finger parameter values did not

affect prediction accuracy. We also found that using the

parameter values computed for each Bias (BTC/Spc) did not

improve prediction accuracy over the other BTC variants.

7.4 Discussion of Experiment 2
Our first hypothesisH1was thatBTC outperforms the other selection-

criterion candidates in terms of ER under the Neutral condition.
This was statistically rejected, as VB/SDC exhibited the best pre-

diction accuracy (Figure 6). Therefore, we could not reproduce the

superiority of BTC to the baselines contrary to the report in the orig-

inal study [11]. Moreover, under any Bias condition, our conclusion
was that using VB/SDC was the best, which supported our second

hypothesis H2 that BTC does not outperform baselines under the

Fast or Accurate condition. The results were not affected by the

choice of four parameter values in Equation 2; the ER difference

fell within 0.03 points depending on the use of BTC/Gen, BTC/Idx,
or BTC/Spc.

If we had used only the Neutral condition, the conclusion that

BTC did not achieve the best prediction accuracy might be simply

considered a failure of replication because, for example, our par-

ticipants were unintentionally biased towards speed or accuracy.

However, our results rejected an assumption that VB/SDC achieved

the best performance by chance; rather, VB/SDC is helpful in se-

lecting desired targets regardless of the users being careful or in a

hurry. Our empirical results are thus more insightful than a simple

replication study with a single subjective bias.

Because there is always a chance of reaching a different result on

statistical significance tests when conducting ANOVA, it is possible

to observe such a reversal in which a state-of-the-art technique

underperforms other simple ones. Also, our result that BTC was

not the best is likely due to the condition differences between the

original study and ours, including apparatuses or participant groups.

However, a pointing-facilitation technique is hopefully effective

even if these conditions change, as we observed in Experiment

1; otherwise, the generalizability of the technique considerably

degrades.

8 GENERAL DISCUSSION
8.1 Methodology of Varying Subjective

Speed-accuracy Biases
The results indicate that Bubble Cursor was effective in reducing

both MT and ER under all three Bias conditions (Experiment 1),

while we could not confirm the superiority of BTC to VB/SDC (Ex-

periment 2). Our hypothesis was that Bubble Cursor and BTC would

be significantly better for Neutral in accordance with the original

studies while their effectiveness would degrade under other Bias
conditions, particularly for Accurate because too low ERs would
be observed. This hypothesis was, however, ultimately rejected in

both experiments.

The results of Experiment 1 indicate that, when researchers pro-

pose a pointing-facilitation technique and evaluate it, they can claim

that the technique is effective in reducing MT and ER even if users

are biased towards speed or accuracy. In addition to the factors

examined in previous studies such as ensuring a wide range of task

difficulty [56], varying subjective biases is another helpful method-

ology when researchers would like to validate the effectiveness of

their new technique.

In Experiment 2, BTC underperformed VB/SDC under all Bias
conditions. The ER observed under theNeutral condition was lower
than that in the original study (14.29 vs. 19.6%), but that under the

Fast condition was higher (19.83%). Thus, using the three Biases
enabled us to sufficiently encompass the ER observed in the original

study. If we had replicated Experiment 2 with only the Neutral
condition, our conclusion that BTC is not the best would be due

to the fault in instruction; our participants were biased towards

accuracy more than in the original study. However, testing three

Biases enabled us to reject such a concern.

Varying speed-accuracy biases has a history in target-pointing

research [27, 33, 48, 75], but the objective was mainly on the in-

variance of throughput. In contrast, we empirically demonstrated

3
We observed several significantly different pairs although their 95% CIs overlap,

which is statistically acceptable [19, 25].
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that using multiple subjective biases enables researchers to state

additional claims, such as consistent effectiveness under different

speed-accuracy biases that users unintentionally have or the ro-

bustness of a finding that a previously proposed technique has a

limitation that has never been pointed out. This methodology is

easy for researchers to introduce in their user studies, because no

additional development for their experimental systems is needed;

just repeating the same experiment under multiple biases with oral

instruction suffices.

8.2 Implications for Future Research
Varying subjective speed-accuracy biases will work well for other

comparison studies on novel pointing-facilitation techniques, in-

cluding target selection for smartwatches [79] and 3D pointing

tasks in virtual reality [8]. Tasks outside the target pointing are

also promising applications, such as evaluating novel techniques

for goal-crossing [38] and path-steering tasks [3].

Given that ERs change depending on the Bias, evaluating the

generalizability of ER prediction models [12, 37, 52] is another

possible scope. Although we mentioned that the choice of 4% ER is

arbitrary (Section 5.3), some models presuppose that participants

exhibit a 4% ER and that the spread of endpoints follow a normal

distribution under the Neutral condition (e.g., [60]). It is currently

unclear if endpoints are normally distributed when the bias shifts

towards speed or accuracy, which is worth investigating in the

future.

While we did not focus on the difference in devices in Experiment

2 (smartphone in the original study vs. tablet in ours), we can

interpret this as an evaluation of the effectiveness of a previously

proposed technique with a new device. A similar approach has

been extensively evaluated, e.g., evaluating Bubble Cursor with

3D input devices [46, 58] and eye trackers [16]. Because the speed-

accuracy balances change depending on the device even for the

same participant group performing the same task [14, 28, 53], if a

previously proposed technique was not effective for a new device

with only a single Bias (typically Neutral), the result does not

necessarily mean the ineffectiveness of the technique. It might be

due to the participants’ unintentional bias, but testing multiple

biases partially decreases this concern.

On the basis of the discussions thus far, we list the following

uses of varying speed-accuracy biases for future research.

• Evaluating a novel interaction technique:
When researchers propose a novel interaction technique,

testing multiple subjective biases can strengthen the claim

of effectiveness over baselines. It also enables a thorough

evaluation and can reveal more insightful findings than us-

ing a single bias, such as understanding when users do not

gain the benefit from the technique (e.g., when they slowly

operate the interface).

• Replicating a user experiment to evaluate a previously
proposed technique:
When researchers conduct a replication study to confirm

whether a good technique would be superior to baselines,

testing multiple biases can more strongly support the find-

ing, regardless of the result supporting the goodness of the

technique (as in our Experiment 1) or lack of goodness over

a baseline (Experiment 2).

• Validating the applicability of a technique to other
devices:
As shown in Experiment 2, a previously proposed technique

may not be effective in certain devices that are different from

those in the original study. In this case, researchers cannot

distinguish the reason behind the lack of goodness if using

only one instruction (typically Neutral); it is probably due

to the differences in participant group, their skills for the

newly tested device, their unintentional speed-accuracy bias

(e.g., they are accidentally biased towards accuracy), and

so on. Examining multiple biases can reduce the possibility

that the ineffectiveness comes from the unintentional bias

and supports the generalizability of their new finding on the

limited applicability of the technique.

8.3 Limitations and Future Work
We confirmed that MT and ER were significantly affected by Bias,
but it is possible that more intense instructions could change the

results. For example, under the extremely accurate condition in

which participants try to avoid any error [75], we might not observe

a significant positive effect of Bubble Cursor on MT or ER.
This assumption is partially suggested from the results in Ex-

periment 1; we found significant interaction of Bias × Cursor ×𝑊

on ER (𝑝 < 0.01, 𝜂2𝑝 = 0.27). As the bias became more accurate

and as𝑊 increased, the differences between Point and Bubble

disappeared (see Figure 4d). If this tendency holds for instructions

asking for more accuracy, we may reach a conclusion that Bubble

Cursor is not effective for a certain bias particularly when users are

careful, which is inconsistent with our current conclusion. Such a

conclusion, however, still supports our main recommendation that

researchers obtain insights from varying speed-accuracy biases.

We are concerned about the participants’ interpretations of the

balances (weights) for each bias. While we confirmed that our oral

instructions adequately changed their biases with large effect sizes,

another possible approach is to give quantitative biases externally

such as monetary incentives and penalties for speed and accuracy

[21, 27] and time penalties for error clicks [7, 65]. Multiple time

limits has also been used to vary speed-accuracy biases [52, 54, 60,

72, 77]. Comparing subjective vs. objective biases is included in our

future work.

Another concern is that the participants’ bias might shift towards

accuracy immediately after an operation error occurs [20]. To omit

such an effect, one possible strategy is to discard several trials after

an error from data analysis, as well as increasing the same number

of trials to fairly compare the ERs. In our study, however, we did not

adopt this approach to remain consistent with the original studies,

i.e., the participants re-aimed for the current target again and we

did not discard any data after an error selection.

Finally, throughout this paper, our viewpoint was from research-

ers who want to conduct thorough and informative user experi-

ments. However, as a negative perspective, varying speed-accuracy

biases directly lengthens the duration of experiments with more

bias levels. This would increase the fatigue of participants and af-

fect their performance. Also, if researchers have to test more task
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factors (e.g., multiple distractor densities in Experiment 1), the pri-

ority of using multiple biases might be low; whether varying biases

depends on the main objective of the research.

9 CONCLUSION
We investigated the effect of varying subjective speed-accuracy

biases to evaluate two previously proposed pointing-facilitation

techniques, Bubble Cursor and Bayesian Touch Criterion BTC. Bub-
ble Cursor reduced MT and ER compared with the baseline point-

ing technique under all bias conditions (confirming the results of

the original study), while BTC underperformed a simple target-

prediction method inconsistently compared with the original study.

We demonstrated that testing multiple bias conditions enabled us to

discuss the effectiveness of novel techniques in more detail than us-

ing only a single (Neutral) instruction. This methodology has been

used to evaluate throughput metrics, but can enrich researchers’

user studies on evaluating novel interaction techniques, replica-

tions of previously proposed techniques, and validations of the

applicability of techniques on future devices.
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